

Phosphoric acid:

Production, importance of raw materials and recycling

First results of the pilot tests

Our Group

- Worldwide leader in phosphate chemistry
- More than 1400 jobs around the world

Our Group

Four 100% Prayon production plants around the world

Engis (head office) - Belgium

Les Roches de Condrieu - France

Puurs - Belgium

Augusta (Prayon Inc.) - USA

Our products

Markets in 2011

Resources and consumption

Phosphate and life

- ☑ Phosphorus is the 6th component of the human body. (after hydrogen, oxygen, carbon, nitrogen and calcium).
- ☑ Key elements of DNA, cells, bones and teeth, phosphates participate to numerous biological processes.
- ☑ Recommended daily amount: 700 mg (for an adult).
- ☑ There is no alternative compound to phosphorus.

Phosphate and life

Resources in the world

World Phosphate Rock Reserves 65,000 million tonnes*

Source: world resources forum

Production of phosphoric acid

Production process

- ☑ Wet process:
 - Widespread process,
 - Adapted to different qualities of phosphate rock,
 - Low energy consumption,
 - Additional treatment (solvent extraction...) needed to reach high purity.
- ☑ Thermical process:
 - Only fluoroapatite,
 - High energy consumption,
 - High purity.

Wet process

☑ Reactions (example of fluoroapatite):

$$Ca_5 (PO_4)_3F + 5 H_2SO_4 + 10 H_2O$$

 $\rightarrow 3 H_3PO_4 + 5 CaSO_4.2H_2O + HF$
 $6 HF + SiO_2 \rightarrow H_2SiF_6 + 2 H_2O$

- Production of 5 tons calcium sulphate (gypsum) per ton P_2O_5 :
 - Can be dihydrate, hemihydrate or anhydrite, depending on the operating conditions,
 - Need for a valorization of this by-product (cement, plaster, agriculture,...).

Importance of raw materials and recycling

Life Cycle Assessment

Life cycle Assessment

Alternative raw materials

- ✓ Have to...
 - ☑ Meet process requirements
 - ☑ Respect food safety (impurities...)
 - ☑ Guarantee the quality of the gypsum

P_2O_5	> 25%
As	< 1 ppm
Cl	< 100 ppm
Na ₂ O	< 0,6%
Fe	< 0,7%
Si	< 3%
MgO	< 0,1%
Al_2O_3	< 0,7%
Ti	< 700 ppm
Total carbon	< 300 ppm

First results of the pilot tests

Raw materials

N° Labo	74481	124591
	14/08/2018	16/05/2019
Al2O3 %	0,0563	0,025
As ppm	0,318	11,31
C total %	5,36	3,81
CaO %	43,2	47,1
Cd ppm	1,71	0,584
CI ppm	7890	495
CO2 %	1,83	3,52
F %	0,047	0,116
Fe2O3 %	0,312	0,137
K20 %	1,32	0,113
MgO %	0,472	0,653
Na2O %	0,119	0,063
NH4 ppm	1280	753
P2O5 T %	34,9	37,5
SiO2 %	0,123	0,112
SO3 %	1,07	0,711
TOC %	4,86	2,8

Quality of the acid

☑ Brown color

☑ TOC: 1600 ppm

Quality of the gypsum

Thank you for your attention

Hubert Halleux hhalleux@prayon.com

PRAYON s.a.
Rue Joseph Wauters, 144
4480 Engis – BELGIQUE

www.prayon.com